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Frequency Response Analysis 

P E Wellstead B.Sc. M.Sc. Ph.D C.Eng. MIEE 

1.    Introduction 
Frequency response analysis is the technique whereby a sinusoidal test signal is used to 
measure points on the frequency response of a transfer function or impedance function.  The 
basic set-up is shown in Figure 1 in which a sine wave u(t) is applied to a system with transfer 
function G(s).  After transients due to initial conditions have decayed away, the output y(t) 
becomes a sine wave but with a different magnitude Y and relative phase Φ.  The magnitude 
and phase of the output y(t) are in fact related to the transfer function G(s) at the frequency (ω  
rad/s) of the input sinusoid.

The relative phase and magnitude of the input and the output waveforms can be directly 
measured from an oscilloscope trace (Figure 2), although this is inherently of poor accuracy 
and in practice more sophisticated methods are required to remove certain errors which occur 
due to noise, non-linearity and the like. 

u = U sin ωt y = Y sin ( ωt + Φ) 
G(s) 

Fig. 1          Linear transfer function with sinewave input.                          

Fig. 2           Sinewave input and steady-state sinewave response as displayed on an 
 oscilloscope.  The corresponding vector notation is shown on the right. 
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The great advantage of frequency response analysis lies in its frequency selective nature.  Just 
one component of the frequency spectrum is extracted, and the corresponding system response 
at that frequency can be measured with great precision.  This has significant advantages where 
the system under consideration has resonant features.  Specifically, the various resonances can 
be excited and studies separately without disturbing other oscillatory modes. 
 
 
 
Fig. 3a 
 
 
 
 
 
 
 
 
 
 
Fig. 3b        The frequency axis is often plotted to a log scale 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3          Presentation of frequency response information 
 
 
By sequentially measuring the gain and phase at various frequencies, a picture of the system 
frequency response can be built-up and plotted either as a diagram in the complex plane (Fig. 
3a) or a joint graph of gain against frequency (Figure 3b).  The latter are often termed Bode 
diagrams because of their use in Bode’s control system design methods.
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Now, after a sufficient time to allow the transients to decay, the “steady state” output is 
obtained.  Combining equations 5 and 6 this is 
 
                    y(t) = U |G (jω)| sin ( ωt + ∠ G(jω�))     

peak value of signal 
root mean square value of signal CF =  

In addition to its frequency selective nature frequency response analysis has the advantage that 
since waves have well-defined amplitude characteristics.  In particular the maximum amplitude 
of a sine wave is only √2 times greater than the root mean square value.  The ratio 

is termed the crest factor (CF) and is an important factor is designing test signals for systems 
analysis.  Specifically, one usually wishes to inject as much power (as determined by the mean 
square signal level) into a system as compatible with a linear system response. 
 
System linearity is usually related to the peak test signal excursion which can be tolerated 
before non-linear effects become evident.  The “best” excitation in this respect is the binary 
waveform with crest factor of infinity.  With a crest factor of 1.41 the sine wave is reasonably 
close to the theoretical best, while retaining the great merit of frequency selective system 
excitation. 
 
2.    Basic result 
Here we present a simple demonstration of the result, quoted earlier, that the steady state 
output of a linear system excited by a sinewave is itself a sine wave with gain and phase related 
to the frequency response as per equation 1. 
 
The transform output of the system in Figure 1 can be written as 
 
           Y(s) = G(s)  U(s) 

[ ] ( )where   =  sin  =  
 +  2U(s) L U t U

s
ω ω

ω2

Suppose the system G(s) is stable with distinct poles pi  [ i = 1, - - - - n]     then the equation 2 
can be written as  

( ) ( ) ( )Y s U
A

s p
B

s j
B

s j
i

ii=

n

( )
* =    

1
+

+
−

+
+











∑ 1 1

ω ω

with corresponding inverse Laplace transform 

[ ] ( )y t U A p t B t Bi i
i

n

( ) =   exp 2  cos− + + ∠










=

∑
1

1 1ω

where     |B1| is the magnitude of B1 
              ∠ B1 is the angle or argument of B1 

( )and,  by Heavisides rule,    B  =  
j

2j1
G ω

………………………………………………………………….         2. 

…………………………………………………...         3. 

………………………………….         4. 

………………………………….         5. 

………………………………………………….         6. 

…………………………………………….         7. 
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3.    Implementation 
The direct relative gain and phase measurement procedure mentioned earlier has certain 
practical draw-backs as a means of measuring Frequency Response.  These relate to the 
corruption or distortion of output signals as they occur in engineering systems.  Signal 
corruption is due to extraneous noise which infects the output measurements (as in Figure 4a) 
and makes it impractical to accurately measure gain and phase.  Signal distortion arises from 
non-linear effects in a system, or measurement procedure, such that the measured output is no 
longer sinusoidal (as in Figure 4b) and again direct measurement of gain and phase is difficult. 
 
 
 
 
Fig. 4a 
 
 
 
 
 
Fig. 4b 
 
 
 
 
 
 
 
Fig. 4          In practical systems, although the applied test signal may be sinusoidal, the 

response is often corrupted due to noise, drift or non-linearity in the system being 
tested 

 
 
Both the problems of non-linear distortion and noise corruption are overcome in the 
measurement scheme of Figure 5, in which the measured output y(t) is first multiplied by sine 
and cosine respectively and then integrated.  Notice the twin processing of multiplication and 
averaging which are present in all noise suppressing identification and estimation techniques. 
 
Effectively the set-up of Figure 5 correlates the output y(t) with different versions of the input, 
hence the term correlation frequency response analyser. 
 
Briefly, the correlation analyser functions as follows.  The measured system output is multiplied 
by both the sine and cosine of the test frequency ω.  The results of the multiplications are then 
fed to two identical integrators, where they are averaged over T seconds.  As the averaging time 
increases the contribution of all unwanted frequency components in y(t) go to zero, and the 
integrator outputs R(T), I(T) become constant values which depend only on the gain and phase 
of the system transfer function at the test frequency. 
 
In practice, the averaging is conducted over a finite time interval T, and it is necessary, for 
reasons to be explained later, that T be made an integer multiple of the test frequency period. 

test signal drifting, noise-corrupted 

test signal non-linearly distorted 
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Thus the frequency response function can be recovered from the signals R(T), I(T) evaluated at 
appropriate multiples of  π�ω. In practice to avoid non-linear harmonic distortion of the results, 
the averaging process is performed of whole cycles of the input sine wave, so that the average 
time T is selected as,

In mathematical terms, the correlation analyser functions as follows: 
                    u(t) = U sin ωt 
                    y(t) = Y sin ( ωt + Φ) 

where            Y = U  |G (jω)|  and  Φ  = ∠ G(jω)   
 
Then the sine channel output R(T) is given by 

( ) ( ) ( )R T U
T

G t dt
T

= ∫ j   sin  sin t +ω ω ω Φ
0

( )= +





− −













  j   cos  

2
sin2 sin  cos2U

T
G T T Tω ω

ω
ω

ω ω
Φ Φ

4 4
1

4

So that when  =    =  1,2,3 - - - -  the sine channel output isT N Nπ
ω

,

( )R N U G  =  
2

 j   cos π
ω

ω





Φ

Similarly the cosine channel output I(T) is given by 

Note that the averaging time is given as multiples of 2π/ω.  This is because averaging over a 
complete cycle avoids certain measurement errors associated with offsets on the system output. 

Fig. 5          Implementation of a correlation 

y(t) 

MULTIPLIERS AVERAGERS 

SYSTEM 
ON TEST 

U sin ωt  
sin ωt  

cos ωt 

R(T)  

I(T)  

SINE/COSINE 
GENERATOR 

( ) ( ) ( )I T U
T

G t t dt
T

 =   j  cos  sin  ω ω ω +∫ Φ
0

which can be evaluated for  =   asT Nπ
ω

( )I N U G 
2

 j  sin π
ω

ω





= Φ

T N N =  2  = 1,2,3 - - -π
ω

,

…………………………………………….         8. 

……………………………………………………….         9. 

…………………………………….         10. 

……………………………………………………….         11. 
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                  = 0 elsewhere 
 
and the sine wave sin ω1τ.  Now the sinewave can be written as 

4.    Noise suppression 
The key feature of the correlation frequency response analyser is that by increasing the 
averaging time T, the influence of extraneous noise on the measurement process can be 
reduced to very low levels indeed.  To see how this works consider Figure 6 in which the true 
system output is corrupted by additive noise n(t).  Because.the noise is additive the sine and 
cosine channels at analysis frequency ω, will each be in error an amount ∆R(T) and ∆I(T) given 
by 

( ) ( )∆R T
T

n t t dt
T

 =  1  sin  ω1

0
∫

( ) ( )∆I T
T

n t t dt
T

 =  1  cos  ω1

0
∫

Now consider the sine channel error only (since the cosine error behaves in a similar manner) 
and interpret the action of the averaging process as a filtering operation. 

SYSTEM u(t) 
n(t) 

y(t) 

Fig. 6           System corrupted by noise 

To do this notice that in equation 12, ∆R(T) can be written as 

( ) ( ) ( )[ ]∆R T
T

n t T t dt =  1  sin  1∫ −ω

( )[ ]Because sin  =  - sin   when  =  2ω ω π
ω1 1

1
t T t T N− ,

Equation 13 is a convolution between the disturbance n(t) and the filter with impulse response 
(Figure7) 

( )h
T

Tτ ω τ τ =  1  sin      0 < <1

                   = 0 elsewhere 
 
The frequency response of this filter is obtained by noting that it consists of the product of the 
function l(τ) defined by 

( )l
T

Tτ τ =  1           0 < <

[ ] [ ]( )sin  =  1
2j

 exp j exp -jω τ ω τ ω τ1 1 1−

……………………………………………………….          

……………………………………………………….          

12. 

…………………………………………….       13. 

………………………………….          

……………………………………………………….       14. 

……………………………………………………….          

……………………………………………………….       15. 

……………………………………………………….          

………………………………………….      16. 
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Fig. 7          Impulse response of the averaging filter in the analyser. 

h(τ)  
T 

(τ)  
N complete cycles 

Hence by the shift theorem in the frequency domain 

……………………………………..         19. 

( ) ( ) [ ] [ ]where L j  =   exp -j   =  1 exp -j  ω ω ωl t t dt
T

t dt
T

−∞

+∞

∫ ∫
0

( ) ( ) ( )[ ]H j  =  1
2j

 L j + j L j - j1 1ω ω ω ω ω−

( ) [ ]( )hence L j  =  1
j

exp -j  =  
exp -j  sin

ω
ω

ω

ω ω

ωT
T

T T

T1 2 2

2

−







Combining 17 and 18, the filter transfer function for  =  2   isT Nπ
ω1

( ) [ ]( )
( )H j  =  
1- exp -j

ω
ω ω

ω ω
1

2 2
1

T

T −

……………………………………….       17. 

…………………………………….          

…………………………….       18. 
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5.    Non linearities 
 
The aim of frequency response analysis is to characterise the transfer function of an underlying 
linear dynarnic system. However, in reality few systems are linear, and so we are really 
measuring some linear approximation. In dynamic analysis the most troublesome forms of non-
linear behaviour are associated with activating (that is, getting signals into a system) and 
sensing (that is, measuring a systems response). Often these forms of non-linear behaviour are 
severe, and may have nothing to do with the system dynamics - only how we actuate them* 
(Figure 9). Typically, actuation and measurement non-linearities contain no dynamics, but 
constitute a static gain characteristic which distorts the input / output information. The first thing 
the analyst tries to do is directly overcome this form of non-linearity. This is often possible by 
putting local feedback loops around non-linear actuators or using the methods outlined in the 
next section. Where this is not possible, intelligent instrumentation can sometimes compensate 
for non-linearity by applying an inverse non-linear operation. Many commercial data logging 
instruments include this feature.  
 
When we can't get round the non-linearity, it must be accommodated in the analysis procedure. 
To see how this might be done consider Figure 10, which shows a non-linear characteristic 
which might be associated with an electric drive motor. The effect of feeding sine-waves 
through this non-linearity is also illustrated.  
 
The response of any such non-linearity to a sine wave can be expressed as a sum of sine and 
cosine waves at the frequencies ω1, 2ω1, 3ω1, 4ω1, - - -.  However, recall that the filter H(jω) 
associated with the correlation frequency response analyser has zero gain at the frequencies 
2ω1 ,  3ω1 , - - -, since these correspond to zeroes of L(jω) when T = N2π�/ω1. Thus the 
frequency response analyser rejects all the harmonic components of output x(t) (Figure 11) 
generated by non-linear distortion, and effectively measures the fundamental component of 
response only. This has uses in control system design where the describing function method 
hinges upon measurement of the fundamental component of a sinusoidal frequency response. 
By correlating the output of a system with harmonic frequencies 2ω1 , 3ω1 , - - -, i ω1 ,  - - -, the 
harmonic components of frequency response are obtainable. These higher frequency 
components are useful in computing the exact frequency response and qualifying the level of 
non-linear distortion. These harmonic measurements can also be used for exact describing 
function measurements.  
 
* This is not always true, since actuators and sensors often form an integral part of a system.  

The gain function of H(jω) is plotted in Figure 8.  As can be seen from the plots, the averaging 
associated with the correlating frequency response analyser acts as a band pass filter with 
centre frequency ω1.  As the average time T increases the bandwidth of the filter becomes 
narrower. Thus the corrupting influence of wide band noise n(t) is increasingly filtered out as the 
correlation time is increased.  This feature of increasing averaging to reduce uncertainty in 
measurements is a recurrent feature of dynamic measurement techniques and should be borne 
in mind when considering more advanced procedures which are not amenable to the simple 
filtering arguments used here.  
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ACTUATOR SYSTEM SENSOR 

Fig. 9          System actuation and sensing 
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Fig.10         Typical actuator non-linearity and system response. 
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Fig. 11        The harmonics which are present in the response from a non-linear system 
are suppressed by the filtering action of the analyser. 
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6.    Closed loop and remote input measurement  
 
Physical constraints often make the measurement scheme of Figure 1. impractical. In particular 
the system to be tested might be an integral part of a larger system, or an unstable process 
which must be maintained under closed loop control at all times. Most modern frequency 
response analysers are modified to cater for such situations. Consider the two basic cases 
shown in Figure 12 where the system G(jω) is either in closed loop or is down stream in a 
cascade of transfer functions. It is assumed that the signals x(t),y(t) either side of the test 
system can be measured and that a test sinusoid u(t) can be injected at some point which 
casually influences x(t) and y(t). The modified transfer function layout of Figure 13 is then used. 
In this scheme the frequency responses from r(t) to u(t) and r(t) to y(t) are measured and the 
frequency response of G(jω) obtained by dividing the gain measurements and subtracting the 
phase measurements. The system of referencing the measurements u(t), y(t) back to the test 
sinusoid is most important. Theoretically it relates to the method of "Instrumental variables" 
which grew out of econometric theory to deal with similar measurement problems in fiscal and 
economic data. Practically, it enables us to test closed loop systems without breaking the loop, 
and at the same time avoiding the ambiguity of feed-back information. The nature of this 
ambiguity can be seen from consideration of Figure 14. Two relations can be written for y, thus 

Fig. 12        Point to point frequency response analyser. 

SYSTEM 

u(t) x(t) y(t) 
G(jω) 

a) closed loop system 

A B C D G(jω) 
x(t) y(t) 

a) cascade system 

[ ]y s
F s

x s u s( )
( )

( ) ( ) =  1     feedback path− +

If the forward path noise n(t) is zero, the forward path relation is exact and a frequency 
response analysis from x(t) to y(t) gives G(jω).  

y s G s x(s) n s( ) ( ) ( ) =            forward path+ ……………………………………….          

………………………………….          
20. 
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However, if u(t) is very small compared with n(t) then the feedback path relation is exact and a 
frequency response analysis from x(t) to y(t) gives -1 / F(jω).       
 
For intermediate values of u(t) and n(t) an estimate is obtained which is a function of G, F and 
the relative power in u(t) and n(t). The procedure of correlating back to u(t), as implemented in 
Figure 13, ensures that no ambiguity occurs. Specifically, the modified implementation 
measures the ratio of the transfer functions  

SYSTEM 

x(t) y(t) 

Rx(T) 

Ix(T) 

Ry(T) 

Iy(T) 

u sin ω1t 

cos ω1t 

sin ω1t 
ω1 

X CHANNEL 

Y CHANNEL 

G(jω) 

SIN / COS 
GENERATOR 

FREQUENCY 
CONTROL 

y s
u s

x(s)
u(s)

( )
( )

 and  thus

y s
u s
x s
u s

G s
FG s

FG s

G s

( )
( )
( )
( )

( )
( )

( )

( )  =      =  1
1

1

+

+

( ) ( ) ( )
( ) ( )System frequency response at =  j  =  

j
j1ω ω1 G

Ry T Iy T
Rx T Ix T

+
+

Fig. 13         A two channel point-to-point analyser. 

Fig. 14        A closed loop system. 

n(t) 

y(t) 
G 

F 

u(t) 
x(t) 
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It is important to realize that the feedback between two signals need not be by an explicit closed 
loop.  The feedback may be implied by the nature of the system, as in the electrical network of 
Figure 15, where the two variables v1, v2 are not related by a simple casual transfer function, 
but are each joint functions of the source voltage v0. 

The modified frequency response analyser can also avoid problems with non-linear distortion. 
Say that block B in Figure 12 is non-linear, then by correlating both x and y back to u(t), only the 
influence of the fundamental component of x is used and so G(jω) is correctly measured.  Thus 
in an open loop control system with actuator non-linearity then the test scheme of Figure 16 will 
avoid the effects of non-linear distortion on the measurement, provided a measurement of x(t) 
can be made.  

v0 v1 v2 

R1 R2 L1 

C1 C2 R3 

Fig. 15        Voltage variables in a circuit. 

NON-LINEAR 
ACTUATOR G(jω� 

test  
sinusoid 
u(t) 

system response 
to be correlated 
with u(t) 

x(t) 
y(t) 

Fig. 16        Linear system with non-linear actuator. 
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7.     Drift and offsets  
 
In most practical situations the output of a system with a sine-wave applied to the input will 
consist of a normal output level, with the sinusoidal component of response superimposed. 
Typically (Figure 17) the output level will consist of a dc offset, combined with a low frequency 
drift.  Moreover, the amplitude of offset and drift components maybe much larger than the test 
signal component.  It is therefore important to find ways of removing low frequency components 
from the system output to prevent them distorting the measurement process. 

The most direct practical procedure is to use ac coupling with a capacitor.  This provides a high 
pass filter which removes low-frequency components of response but leaves the sine-wave 
component uncorrupted.  However, it is interesting to notice that the frequency response 
averaging filter H(jω) has a zero at ω= 0, so that constant components of output are always 
exactly cancelled out.  Moreover, as the averaging number N is increased (Figure 8), the 
filtering out of low frequency drift becomes more effective. In practical situations the primary 
method of removing offsets and low frequency drift is by high-pass filtering or subtracting an 
estimate of the offset from the original signal.  This removal at source of the major part of the 
offset drift improves the dynamic resolution of the frequency response measurement, and allows 
the natural filtering action of H(jω) to suppress residual effects.  

RESPONSE 
system output plus test sinusoid 

normal system output 

TIME 

Fig. 17        Measured system output showing normal operating level 
(comprising drift, offset etc.) and response to a test sinusoid. 
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8.    Applications  
 
These brief notes outline some typical applications of the frequency response analyser.  
 
(i) Harmonic Analysis  
 
In practice one often meets engineering signals which are periodic with a well defined (i.e. 
noise-free) shape.  In such cases it is frequently useful to analyse the harmonic structure of 
these waveforms, since the occurrence of certain harmonics may give insight into their source.  
By the same token there may be a requirement that certain harmonic components must be less 
than a pre-specified level.  This is true in, for example, testing commercial signal generators 
where part of the technical specification refers to permitted harmonic levels.  

The frequency response analyser can readily be adapted as a harmonic analyser by adding, to 
the circuit of Figure 5, the facility to synchronise the frequency ωƒ and phase of the test sinusoid 
with the fundamental period of the periodic signal.  The periodic signal is then treated as if it 
were the system output y(t) (see Figure 18) and correlated with the harmonic frequencies r ωƒ

(r =1, 2, 3, - - -) generated in the frequency response analyser.  The sine and cosine output 
channels then give the relative gain and phase of the harmonic components.  The use of 
harmonic frequencies in this way can also be applied to measure the harmonic content of 
response of a non-linear system.  

 

Fig. 18         The frequency response analyser used as a harmonic analyser. 

synchronise with frequency (ωƒ) 
and phase of fundamental component 

periodic signal 

sync 
sin rωƒ t  

cos rωƒ t 

y(t) 

SIN/COS 
GENERATOR 
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ii)       Transfer Function Analysis of AC Systems  
 
In addition to conventional dc feedback control systems there is a class of servo-mechanisms 
which employ amplitude modulated ac signals.  The frequency response analyser is particularly 
effective at response testing this kind of control system for three reasons:  
 

a)       It is particularly easy to modulate and demodulate the amplitude of an ac signal 
with sinewaves.  

 
b)       The low crest factor of a sinewave test signal means that a relatively high level of 

modulation can be achieved before non-linear affects occur.  
 
c)       If the demodulated signal still contains significant components of the carrier 

frequency, the filtering action of the correlation frequency response analyser will 
tend to suppress the carrier frequency components.  

A potential problem with ac modulated systems occurs when the frequency of analysis ω 
approaches ωc /2, where ωc is the carrier frequency.  The spectrum of the demodulated signal 
(Figure 19) will contain contributions at ω, ωc and ωc ± ω.   As ω is increased the fundamental 
and the lower sideband ωc - ω��converge, until at ω = ωc /2, they meet and both contribute to the 
correlator output.  Depending on the relative phases of ω  and ωc - ω��the transfer function 
analyser at ωc /2 can take any one of a whole range of values.  In practice, ac modulated servos 
have a frequency response which falls to zero well before ωc /2, so that this kind of 
phenomenum does not frequently cause problems.  

ω ωc ωc + ω ωc - ω 
ωc 

2 

Fig. 19        Frequency spectrum of an amplitude modulated signal which has 
been imperfectly demodulated. 
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iii)      Sampled Systems  

W(t) 

u(t) x(t) y(t) 
G(s) 

∆t 

Fig. 20        A system with a sampler. 

The modulation affect described above can cause problems in systems which included 
sampling action. Specifically, consider a sampled data control system (Figure 20) in which the 
test signal u(t) is sampled at uniform intervals ∆t seconds apart. The sampling action can be 
written as  
 
          x (t) = u(t)  W(t)                                             ………......................................……...….      22.  
 
Where the sampler W(t) is a train of impulses spaced ∆t seconds apart. Now the sampler can 
be considered as a series expansion in terms of harmonies of ωs, where ωs = 2π/∆t. 

or 

If the input is a sinewave of frequency ω and relative phase Φ then the sampled output is 

( )i.e.    =  1  1+ 2 cos 
1

W t
t

k ts
k

∆
ω

=

∞

∑












( ) ( ) ( )x t
t

t t k t
k

s =  1  sin +  2 sin  cos   
∆

Φ Φω ω ω+ +










=

∞

∑
1

( ) ( ) ( )[ ]χ ω ωt
t

t t =  1  sin   sin
∆

Φ Φ+ − −

=  2  cos  sin 
∆

Φ
t

tω

The frequency spectrum of this is shown in Figure 21.  Note that when ω = ωs /2 the lower 
sideband at ωs - ω coincides with the fundamental frequency ω�and gives a component of x(t) at 
frequency ω = ωs /2 demarked χ(t) and defined by 

( ) ( ) ( ) ( )[ ]x t
t

t k t t k t ts s
k

 =  1  sin +  sin - sin     
∆

Φ Φ Φω ω ω ω ω+ + + − −










=

∞

∑
1

ω 

ωs 

2 

ωs- ω ωs+ ω 2 ωs+ ω 2 ωs+ ω 3ωs+ ω 3ωs- ω 

ωs 2ωs 3ωs ω 3ωs 

2 
5ωs 

2 

Fig. 21        Frequency spectrum of the sampled signal x(t). 

……………………………………………………….       23. 

………………………….       24. 

……….      25. 
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